
Regardless of the compatibility issues with Django, is it the right
time to shift to Python 3.x and tackle the issues head on?

Python 3
and Django:
will the duo work
well together?

1

ImPRovements In Python 3.0 ...2

Python 2.x oR Python 3.x: WhIch to Use? ..3

Django ...5

Django anD Python 3.0 ..6

PRoblems of RUnnIng Django WIth Python 3.x ..7

backWaRD comPatIbIlIty ..8

Python, the popular object-oriented, interpreted, high-level programming
language with dynamic semantics, got the new 3.0 version in 2008. This is when
Guido van Rossum, the creator of Python, decided on a thorough cleanup of
Python 2.x, fixing well-known annoyances and warts, and removing most of the
old cruft.

2

The major improvements in Python 3.0, also known as “Python 3000” or “Py3K”
over Python 2.x are

•	 Better	Unicode	support.	All	text	strings	became	Unicode	by	default,	with	
saner		bytes/Unicode	separation.

•	 Major	 structural	 adjustments	 to	 several	 aspects	 of	 the	 core	 language,	
making	it	more	consistent	with	the	rest	of	the	language	and	easier	to	learn.	
For	instance,	“Print”	and	“Exec”	become	statements	and	integers	use	floor	
division.

•	 Removal	 of	 old	 cruft.	 For	 example,	 all	 classes	 are	 now	 new-style,	 and	
“range()”	returns	a	memory	efficient	iterable	rather	than	a	list	as	in	2.x.

•	 New	approach	to	string	formatting.

The problem was that the cleanup was done with scant regard for backward
compatibility. As such, the Python 2.x development progressed simultaneously
with Python 3.x, with Python 2.7 releasing in 2010. However, 2.7 is the final 2.x
version. Python did offer extended support for this end-of-life release, but Python
users looking to upgrade now may have no option but to make a move to Python

Improvements In
python 3.0

O1

3

In normal circumstances, it makes sense to shift to Python 3.0 for the simple
reason that Python 2.x is legacy, and Python 3.x represents the present and future
of this language. Python 3.x has had stable releases for more than five years,
which include the 3.3 and 3.4 versions in the years 2012 and 2014, respectively.
Moreover, the recent developments, including all the latest standard library
improvements are only accessible by default in Python 3.x.

However, migrating from Python 2.7 to 3.x is not that straightforward or an
open and shut case. In this case, a later version need not necessarily mean an
advanced or even better version.

The reasons that inhibit migration to Python 3.x are:

1.		 Python	3.x	still	has	 inferior	 library	support	compared	to	Python	2.7,	and	
most	current	Linux	distributions	and	Macs	still	use	Python	2.x	as	default.

2.		 Several	 new	 features	 of	 Python	 3.x	 are	 incompatible	 with	 the	 older	 2.x	
versions.	The	following	are	some	features	available	only	in	3.x	releases	and	
not	back-ported	to	the	2.x	series:

	 •	 Default	Unicode	Strings
	 •	 Clean	Unicode/bytes	separation
	 •	 Exception	chaining
	 •	 Syntax	for	keyword-only	arguments
	 •	 Extended	tuple	unpacking
	 •	 Non-local	variable	declarations
	 •	 Function	annotations	

python 2.x or
python 3.x: Which
To Use?

O2

4

3.		 Most	third-party	software,	especially	in-house	software	used	by	businesses,	
still	do	not	work	in	Python	3.x,	or	at	least	do	not	work	properly.	Also,	popular	
modules	such	as	Twisted,	for	networking	and	other	applications,	gevent,	a	
network	library,	and	others	do	not	support	Python	3.x.	Retaining	access	to	
all	functionality	of	such	software	require	continued	usage	of	Python	2.x.

4.	 Many	resources,	including	the	official	tutorial	for	Django	1.6	are	written	for	
Python	2.X.	

5.		 Python	3	is	currently	slower	than	Python	2.7.	

6.		 Django,	 the	popular	web	development	 framework	 for	Python,	 is	 not	 yet	
fully	compatible	with	Python	3.x.

Considering these factors, upgrading to Python 3.x is not a given, and depending
on the exact circumstances of the business, it may make sense to continue with
Python 2.x

5

Django is a high-level Python web development framework. It offers a complete
development environment that makes rapid development possible, while at the
same time delivering a clean and pragmatic design. It is best suited to develop
high-performing yet elegant web applications, like the ones used in newsrooms.

some of Django’s features are:

•	 A	 rich,	 dynamic,	 database	 access	 API.	 Django’s	 potent	Object-Relational	
Mapping	system	backs	a	huge	set	of	database	systems.	Moving	between	
engines	is	effortless,	and	requires	only	the	changing	of	a	configuration	file.

•	 Automatic	 admin	 interface.	Django	offers	 ready-made	 and	 customizable	
admin	 interfaces,	 which	 spares	 developers	 the	 tedious	 task	 of	 creating	
interfaces	 to	 add	 and	 update	 content,	 and	 allows	 them	 to	 control	Web	
applications	through	a	Web	portal	easily.

•	 Elegant,	 cruft-free	 URL	 designs	 with	 no	 framework-specific	 limitations,	
offering	the	utmost	in	flexibility.	Django’s	URLs	are	readable,	boosting	SEO.

•	 A	powerful,	extensible	and	designer-friendly	template	language	that	makes	
it	possible	to	separate	design,	content	and	Python	code.	Django’s	powerful	
template	system	makes	injecting	programming	logic	inside	templates	easy,	
to	simplify	complex	things.

•	 Granular	 cache	 system,	 with	 memcached	 or	 other	 cache	 frameworks	
offering	super	performance.

•	 Ultra	lightweight	web	server	for	development	and	testing.	The	debugging	
mode	offers	very	thorough	and	detailed	error	messages,	making	it	possible	
to	isolate	bugs	very	easily.

Django
O3

6

Django is based on Python 2.7. Since the launch of Python 3.0, Django, along with
other major Python based packages such as Flask, CherryPy, Pyramid, NumPy,
cx_Freeze, and py2exe are in the process of being ported to Python 3.x.

Django 1.5 was the first version of Django to support Python 3. This, however,
offered only “experimental” support. Official support for Python 3.0 came in
Django 1.6, and the September 2014 launch of Django 1.7 makes the support
better.

However,	Django,	even	the	latest	1.7	version,	is	by	no	means	ready	
for	Python	3.	The	porting	is	not	complete,	and	running	Django	with	
Python	3.0	could	still	pose	some	problems.

Even as Django 1.7 has theoretically resolved most of the compatibility issues
that plagued earlier versions, there are still several known issues. One such is the
inability to migrate database with Django 1.7. Moreover, it has still not received
real-life testing under Python 3. While the core development team did its best to
eliminate bugs, the test suite does not cover all possible uses of Django.

Meanwhile, the release of Django 1.7 has led to Django 1.5 reaching its end-of-
life. Django 1.6 will continue to receive support until the release of Django 1.8,
expected in March 2015. However, none of these releases – Django 1.5, 1.6 or 1.7
are fully stable. Django 1.4 is the long-term support release, and this does not
support Python 3.0.

Django anD
python 3.0

O4

7

Django 1.5 and below contain several string related classes and functions in their
“django.utils.encoding” and “django.utils.safestring” modules. Many of these
classes and functions use “str” and “Unicode”. Python 3 considers all strings as
Unicode by default. The “Unicode” type in Python 2 is renamed “str” in Python
3, and “str()” in Python 2x is renamed “bytes”. As such, this creates all round
confusion.

Adding to the confusion is Python 3 not having automatic conversions between
str and bytes, and the codecs module becoming more strict. In Python 3, str.
encode() always returns bytes, and bytes.decode always returns “str”.

Python 2’s “u” prefix shows up as a syntax error in Python 3.2 but is allowed in
Python 3.3. In Python 3.2, it becomes necessary to prefix byte strings with “b”.

Problems of
rUnning Django
wIth python 3.x

O5

8

Python 2.6+ and Python 3.3+ share a fairly large common subset. This, combined
with the restoration of “u” prefix support for Unicode literals in Python 3.3 makes
it possible to make semantically correct Python 2.6+ code source compatible
with Python 3.3+. The main task is to import some things from different places to
resolve the different naming in Python 2 and Python 3.

The DjangoCon Europe sprints took up the task of making Python 3 backward
compatible, to enable it to work seamlessly with older versions of Django. The
core team wrote Python 3 code with Python 2 compatibility, rather than the other
way round, to ensure that the codebase remains future-proof.

The major work-through were:

•	 Renaming	 “string”	 as	 “bytes”	 and	 “Unicode”	 as	 “text”	 in	 functions	 and	
classes	 to	 remove	 the	 confusion	 caused	 by	 these	 terms	 meaning	 two	
different	things	in	Python	2	and	Python	3.

•	 Correcting	 several	 approximations	 that	 lingered	 from	previous	 versions.	
Python	3	requires	string	encoding	and	decoding	operations	to	be	correct.	
This	had	a	spin-off	benefit	of	cleaning	up	the	code	considerably.

•	 Making	changes	in	Unicode	literals,	such	as	removing	the	“u”	prefix	before	
Unicode	strings,	adding	a	“b”	prefix	before	bytestrings,	and	adding	“from	
__future__	import	unicode_literals”	at	the	top	of	Python	modules.

Based on these efforts, it is now possible to write a compatible source code in
Django 1.5 to address much of these issues using the Python 2/3 Compatible
Source strategy.

The “six” compatibility package is the key utility for supporting Python 2 and
Python 3 in a single code base. “Six” is a single Python file that offers utilities for
wrapping over differences between Python 2 and Python 3, supporting codebases

BackwarD
comPaTibiliTy

O6

https://docs.python.org/3.0/whatsnew/3.0.html

9

to work on both Python 2 and 3 without modification. Invoking django.utils.six,
a compatibility tool offered by Django 1.5 makes it possible to run the same
Django code on both Python 2.6.5 or above and Python 3.2 or above. This tool is
a customized version of Python’s “six” compatibility layer.

Using	 this	 compatibility	 code,	 it	 is	 possible	 to	 make	 Python	 3	
backward-compatible,	 which	 is	 making	 the	 code	 compatible	 with	
Python	2.	It	is	not	possible	to	make	Python	2	code	compatible	with	
Python	3.	

Based on these revisions, the strings and classes were renamed in Django’s
“django.utils.encoding” and “django.utils.safestring” modules. For instance, in
django.utils.encoding. “smart_str” becomes “smart_bytes”, “smart_unicode”
becomes “smart_text” and “force_unicode” becomes “force_text”. In django.
utils.safestring, the mark_safe() and mark_for_escaping() functions did not
change, but “EscapeString” became “EscapeBytes”, “Escape Unicode” became
“EscapeText”, “SafeString” became “SafeBytes”, and “SafeUnicode” became
“SafeText”.

Also, bytestrings and Unicode strings that contain only ASCII data are
interchangeable in Python 2, and as such one can use Unicode strings everywhere
and not use the “b” prefixes. However, writing such a compatible source code
can be frustrating.

All things considered, it may make sense to persist with Python 2.0 for some more
time. However, the onus should be on writing good code. A well-written 2.x code
can be a lot like 3.x code, and 2.x v/s 3.x becomes less of an issue. That can mean
many things, including using new-style classes, not using ancient deprecated
incantations of print, and using lazy iterators where available.

https://docs.djangoproject.com/en/1.7/topics/python3/

10

Reference:

1. http://nick-coghlans-python-notes.readthedocs.org/en/latest/

2. http://stackoverflow.com/questions/26298723/is-django-faster-on-python-3

3. http://stackoverflow.com/questions/8945938/django-compatibility-issues-with-
python-3-2

4. http://www.opensourceforu.com/2013/03/django-a-web-framework-with-
immense-potential/

5. http://www.pydanny.com/experiences-with-django-python3.html

6. http://www.screamingatmyscreen.com/2012/2/business-decision-why-i-use-
django-and-not-ruby-on-rails/

7. https://docs.djangoproject.com/en/1.7/topics/python3/

8. https://docs.python.org/3.5/whatsnew/index.html

9. https://github.com/bread-and-pepper/django-userena/issues/398

10. https://wiki.python.org/moin/Python2orPython3

11. https://www.djangoproject.com/weblog/2012/aug/19/experimental-python-3-
support/

suyati technologies

Suyati is a young, upwardly mobile company focused on delivering niche IT
services to support myriad Digital Engagement strategies. Our expertise also
includes integration and delivery of CRM, CMS and e-commerce solutions.

www.suyati.com services@suyati.com

