
Regardless of the compatibility issues with Django, is it the right
time to shift to Python 3.x and tackle the issues head on?

Python 3
and Django:
will the duo work
well together?

1

Improvements in Python 3.0..2

Python 2.x or Python 3.x: Which to Use?...3

Django..5

Django and Python 3.0...6

Problems of Running Django with Python 3.x...7

Backward Compatibility...8

Python, the popular object-oriented, interpreted, high-level programming
language with dynamic semantics, got the new 3.0 version in 2008. This is when
Guido van Rossum, the creator of Python, decided on a thorough cleanup of
Python 2.x, fixing well-known annoyances and warts, and removing most of the
old cruft.

2

The major improvements in Python 3.0, also known as “Python 3000” or “Py3K”
over Python 2.x are

•	 Better Unicode support. All text strings became Unicode by default, with
saner bytes/Unicode separation.

•	 Major structural adjustments to several aspects of the core language,
making it more consistent with the rest of the language and easier to learn.
For instance, “Print” and “Exec” become statements and integers use floor
division.

•	 Removal of old cruft. For example, all classes are now new-style, and
“range()” returns a memory efficient iterable rather than a list as in 2.x.

•	 New approach to string formatting.

The problem was that the cleanup was done with scant regard for backward
compatibility. As such, the Python 2.x development progressed simultaneously
with Python 3.x, with Python 2.7 releasing in 2010. However, 2.7 is the final 2.x
version. Python did offer extended support for this end-of-life release, but Python
users looking to upgrade now may have no option but to make a move to Python

Improvements in
Python 3.0

O1

3

In normal circumstances, it makes sense to shift to Python 3.0 for the simple
reason that Python 2.x is legacy, and Python 3.x represents the present and future
of this language. Python 3.x has had stable releases for more than five years,
which include the 3.3 and 3.4 versions in the years 2012 and 2014, respectively.
Moreover, the recent developments, including all the latest standard library
improvements are only accessible by default in Python 3.x.

However, migrating from Python 2.7 to 3.x is not that straightforward or an
open and shut case. In this case, a later version need not necessarily mean an
advanced or even better version.

The reasons that inhibit migration to Python 3.x are:

1. 	 Python 3.x still has inferior library support compared to Python 2.7, and	
most current Linux distributions and Macs still use Python 2.x as default.

2. 	 Several new features of Python 3.x are incompatible with the older 2.x	
versions. The following are some features available only in 3.x releases and
not back-ported to the 2.x series:

	 •	 Default Unicode Strings
	 •	 Clean Unicode/bytes separation
	 •	 Exception chaining
	 •	 Syntax for keyword-only arguments
	 •	 Extended tuple unpacking
	 •	 Non-local variable declarations
	 •	 Function annotations

Python 2.x or
Python 3.x: Which
to Use?

O2

4

3. 	 Most third-party software, especially in-house software used by businesses,
still do not work in Python 3.x, or at least do not work properly. Also, popular
modules such as Twisted, for networking and other applications, gevent, a
network library, and others do not support Python 3.x. Retaining access to
all functionality of such software require continued usage of Python 2.x.

4.	 Many resources, including the official tutorial for Django 1.6 are written for
Python 2.X.

5. 	 Python 3 is currently slower than Python 2.7.

6. 	 Django, the popular web development framework for Python, is not yet
fully compatible with Python 3.x.

Considering these factors, upgrading to Python 3.x is not a given, and depending
on the exact circumstances of the business, it may make sense to continue with
Python 2.x

5

Django is a high-level Python web development framework. It offers a complete
development environment that makes rapid development possible, while at the
same time delivering a clean and pragmatic design. It is best suited to develop
high-performing yet elegant web applications, like the ones used in newsrooms.

Some of Django’s features are:

•	 A rich, dynamic, database access API. Django’s potent Object-Relational
Mapping system backs a huge set of database systems. Moving between
engines is effortless, and requires only the changing of a configuration file.

•	 Automatic admin interface. Django offers ready-made and customizable	
admin interfaces, which spares developers the tedious task of creating
interfaces to add and update content, and allows them to control Web
applications through a Web portal easily.

•	 Elegant, cruft-free URL designs with no framework-specific limitations,
offering the utmost in flexibility. Django’s URLs are readable, boosting SEO.

•	 A powerful, extensible and designer-friendly template language that makes
it possible to separate design, content and Python code. Django’s powerful
template system makes injecting programming logic inside templates easy,
to simplify complex things.

•	 Granular cache system, with memcached or other cache frameworks
offering super performance.

•	 Ultra lightweight web server for development and testing. The debugging
mode offers very thorough and detailed error messages, making it possible
to isolate bugs very easily.

Django
O3

6

Django is based on Python 2.7. Since the launch of Python 3.0, Django, along with
other major Python based packages such as Flask, CherryPy, Pyramid, NumPy,
cx_Freeze, and py2exe are in the process of being ported to Python 3.x.

Django 1.5 was the first version of Django to support Python 3. This, however,
offered only “experimental” support. Official support for Python 3.0 came in
Django 1.6, and the September 2014 launch of Django 1.7 makes the support
better.

However, Django, even the latest 1.7 version, is by no means ready
for Python 3. The porting is not complete, and running Django with
Python 3.0 could still pose some problems.

Even as Django 1.7 has theoretically resolved most of the compatibility issues
that plagued earlier versions, there are still several known issues. One such is the
inability to migrate database with Django 1.7. Moreover, it has still not received
real-life testing under Python 3. While the core development team did its best to
eliminate bugs, the test suite does not cover all possible uses of Django.

Meanwhile, the release of Django 1.7 has led to Django 1.5 reaching its end-of-
life. Django 1.6 will continue to receive support until the release of Django 1.8,
expected in March 2015. However, none of these releases – Django 1.5, 1.6 or 1.7
are fully stable. Django 1.4 is the long-term support release, and this does not
support Python 3.0.

Django and
Python 3.0

O4

7

Django 1.5 and below contain several string related classes and functions in their
“django.utils.encoding” and “django.utils.safestring” modules. Many of these
classes and functions use “str” and “Unicode”. Python 3 considers all strings as
Unicode by default. The “Unicode” type in Python 2 is renamed “str” in Python
3, and “str()” in Python 2x is renamed “bytes”. As such, this creates all round
confusion.

Adding to the confusion is Python 3 not having automatic conversions between
str and bytes, and the codecs module becoming more strict. In Python 3, str.
encode() always returns bytes, and bytes.decode always returns “str”.

Python 2’s “u” prefix shows up as a syntax error in Python 3.2 but is allowed in
Python 3.3. In Python 3.2, it becomes necessary to prefix byte strings with “b”.

Problems of
Running Django
with Python 3.x

O5

8

Python 2.6+ and Python 3.3+ share a fairly large common subset. This, combined
with the restoration of “u” prefix support for Unicode literals in Python 3.3 makes
it possible to make semantically correct Python 2.6+ code source compatible
with Python 3.3+. The main task is to import some things from different places to
resolve the different naming in Python 2 and Python 3.

The DjangoCon Europe sprints took up the task of making Python 3 backward
compatible, to enable it to work seamlessly with older versions of Django. The
core team wrote Python 3 code with Python 2 compatibility, rather than the other
way round, to ensure that the codebase remains future-proof.

The major work-through were:

•	 Renaming “string” as “bytes” and “Unicode” as “text” in functions and
classes to remove the confusion caused by these terms meaning two
different things in Python 2 and Python 3.

•	 Correcting several approximations that lingered from previous versions.
Python 3 requires string encoding and decoding operations to be correct.
This had a spin-off benefit of cleaning up the code considerably.

•	 Making changes in Unicode literals, such as removing the “u” prefix before
Unicode strings, adding a “b” prefix before bytestrings, and adding “from
__future__ import unicode_literals” at the top of Python modules.

Based on these efforts, it is now possible to write a compatible source code in
Django 1.5 to address much of these issues using the Python 2/3 Compatible
Source strategy.

The “six” compatibility package is the key utility for supporting Python 2 and
Python 3 in a single code base. “Six” is a single Python file that offers utilities for
wrapping over differences between Python 2 and Python 3, supporting codebases

Backward
Compatibility

O6

https://docs.python.org/3.0/whatsnew/3.0.html

9

to work on both Python 2 and 3 without modification. Invoking django.utils.six,
a compatibility tool offered by Django 1.5 makes it possible to run the same
Django code on both Python 2.6.5 or above and Python 3.2 or above. This tool is
a customized version of Python’s “six” compatibility layer.

Using this compatibility code, it is possible to make Python 3
backward-compatible, which is making the code compatible with
Python 2. It is not possible to make Python 2 code compatible with
Python 3.

Based on these revisions, the strings and classes were renamed in Django’s
“django.utils.encoding” and “django.utils.safestring” modules. For instance, in
django.utils.encoding. “smart_str” becomes “smart_bytes”, “smart_unicode”
becomes “smart_text” and “force_unicode” becomes “force_text”. In django.
utils.safestring, the mark_safe() and mark_for_escaping() functions did not
change, but “EscapeString” became “EscapeBytes”, “Escape Unicode” became
“EscapeText”, “SafeString” became “SafeBytes”, and “SafeUnicode” became
“SafeText”.

Also, bytestrings and Unicode strings that contain only ASCII data are
interchangeable in Python 2, and as such one can use Unicode strings everywhere
and not use the “b” prefixes. However, writing such a compatible source code
can be frustrating.

All things considered, it may make sense to persist with Python 2.0 for some more
time. However, the onus should be on writing good code. A well-written 2.x code
can be a lot like 3.x code, and 2.x v/s 3.x becomes less of an issue. That can mean
many things, including using new-style classes, not using ancient deprecated
incantations of print, and using lazy iterators where available.

https://docs.djangoproject.com/en/1.7/topics/python3/

10

Reference:

1.	 http://nick-coghlans-python-notes.readthedocs.org/en/latest/

2.	 http://stackoverflow.com/questions/26298723/is-django-faster-on-python-3

3.	 http://stackoverflow.com/questions/8945938/django-compatibility-issues-with-
python-3-2

4.	 http://www.opensourceforu.com/2013/03/django-a-web-framework-with-
immense-potential/

5.	 http://www.pydanny.com/experiences-with-django-python3.html

6.	 http://www.screamingatmyscreen.com/2012/2/business-decision-why-i-use-
django-and-not-ruby-on-rails/

7.	 https://docs.djangoproject.com/en/1.7/topics/python3/

8.	 https://docs.python.org/3.5/whatsnew/index.html

9.	 https://github.com/bread-and-pepper/django-userena/issues/398

10.	 https://wiki.python.org/moin/Python2orPython3

11.	 https://www.djangoproject.com/weblog/2012/aug/19/experimental-python-3-
support/

Suyati Technologies

Suyati is a young, upwardly mobile company focused on delivering niche IT
services to support myriad Digital Engagement strategies. Our expertise also
includes integration and delivery of CRM, CMS and e-commerce solutions.

www.suyati.com� services@suyati.com

