

Continuous Integration in
Salesforce using Salesforce DX

TABLE OF CONTENTS

2 How does Continuous Integration Work?

Introduction t ration1

Set-Up3

4 3rd Party apps

5 Best Practice

Continuous Integration in Salesforce using Salesforce DX

6 Conclusion

1

Continuous Integration in Salesforce using Salesforce DX

Change is the only constant in the software ecosystem. However, changes also mean the risk of introducing
new or functionalities that could impact existing code. Testing, to exclude bugs, is a laborious, time-consuming

and resource-intensive process. Running extensiv everytime a change is proposed is not practical.
Enter continuous integration. Continuous Integration (CI) is a software development approach of automating
the test suite, to activate all integration and unit tests run on every merge or pull request, automatically. The
approach pre-empts problems post-merge, by unearthing it upfront. Early fixes save time, money, and effort, and

ensure robust code which makes customers happy.

INTRODUCTION

CONTINUOUS INTEGRATION

Continuous Integration automates the test process
and makes it simple, making it viable to run tests every
time a change is implemented.

Continuous Integration works by triggering an auto-
mated process every time the developer introduces
new code to an application. The automated pr
residing in the CI server grabs the code from the
shared repository, integrates the new build, and tests
the software for problems.

The essential tools to get started with Continuous
Integration ar

Salesforce DX: Developers commit changes locally in
Salesforce CX, and upload it to Travis CI or any other
continuous integration server used for the testing
pr

GitHub, or the code hosting platform for collaboration
and version contr

A continuous integration server which integrates well
with GitHub. Travis CI is the most popular CI server for
Salesforce, though other CI servers work just as well.
The script to trigger and run the automated testing
process resides in the Continuous Integration Server.

The master code resides in the GitHub repository,
accessible to all developers. Each developer “checks
out” code to their sandbox in Salesforce DX, makes the
required changes and pushes the revised code back
into the repository. When such new or updated code
enters the shared repository, it triggers the automated
CI process, running the integration tests. The tests
make sure the newly inducted code does not break
another part of the software or renders the legacy
code unworkable. If the tests turn unsuccessful, the CI
server generates the details of the failure, pinpointing
where errors occurred. If there are no errors, or when
developers rectify the errors, the updated software
may be released manually or even scheduled for auto-
matic release. DevOps teams may take automation to
its logical conclusion by having the system deploy and
deliver the product automatically.

HOW DOES CONTINUOUS INTEGRATION WORK?

2

Continuous Integration in Salesforce using Salesforce DX

Such a process is easy to run and the process gets
over fast, making it viable to run it multiple times in a
day. The code is only merged once, after the build
passes testing, eliminating the chance of breaking
the master code. The process runs in the background,
allowing developers to carry on with other tasks.

There is no fixed or specified set of software for imple-
menting Continuous Integration. However, implement-
ing Continuous Integration requires a methodological
appr

Step 1:
Decide on the Approaches and Models
An important decision to take upfront is the environ-
ment strategy or selecting the right environment for the
right task.

Set the development environment, test environment
and production environment upfront. While traditionally
testing is done in a sandbox, adopting Scratch org in
the developer environment and testing environment
allows testers to start in the same environment as a
developer, with no difference in the template or any
other variables. For large and complex projects, having
a branching strategy that aligns with the development
environment makes life a lot easier for the developer.

There are two broad models to run Continuous Integra-
tion. The preferred model depends on the development
approach. The package development model is the best
option for teams using scratch orgs and unlocked
packages to deploy their changes. The org develop-
ment model is the better option for teams using sand-
boxes and Metadata API commands to deploy their
changes. Salesforce DX adopts scratch org, making the
org development model a better option.

Step 2:
Select and Deploy any Continuous Integration Tool of
Choice

Continuous Integration runs through a Continuous
Integration tool that connects with the version control
system. The tool contains the script that triggers the
tests when the CI process is invoked from the shared
repository. Travis CI is the most popular tool among
Salesforce developers. However, other tools from
different vendors also work fine. The development
team may select any Continuous Integration tool of
choice, and place it in the Continuous Integration
server

A version control repository is an optional inclusion, but
an important safety net if things go wrong.

SET-UP

3

Continuous Integration in Salesforce using Salesforce DX

Step 3:
Set Rules and Select Tests

Having selected the Continuous Integration tool, build
rules specifying the tests to run on triggering Continu-
ous Integration. The main tests are feature testing,
integration testing and performance testing. The order
of tests is not set in stone and depends on the nature of
the app.

The test is run when committing the code to scratch
org. The automated server pulls changes into source
control, and run the tests. Salesforce DX Command
Line Interface (CLI) delivers breakthrough integration
and automation capabilities, making the process of
automated tests ver

Create a test delivery pipeline, specifying different tests
for different situations, and running the test when it
should be run. The success of the entire approach
depends on selecting the right tests, to run at each
stage.

Step 4:
Make Changes

Having deployed a Continuous Integration tool and set
the rules, developers may work normally, introducing
changes as and when they lik

Using traditional sandbox allows each developer to
maintain their sandbox, and committing the code to the
version control system, where the CI script is triggered.
All tests run in developer sandbox. When the developer
introduces a change to the repository or does some-
thing to trigger the test, the Continuous Integration tool
runs a script in the background. The script configures
the environment, deploy the changes, and run the test

On completion of the test each time, the tool generates
a log containing details on the tests passed and failed.
Configuring the pull request rules to ensure changes
are not merged until all builds pass pre-empts the intro-
duction of new bugs into the code. After each test is
done, the scratch org, no longer needed, is retested.

-

-

among developers.

Each repository offers a readme offering instructions on

the version control system. Most vendors also offer a
sample CI configuration file, making it easy for uninitiat-

of tests increases, paying per Docket image may

version control repositories. While such plans may offer

started.

3RD PARTY APPS

BEST PRACTICES

4

Continuous Integration in Salesforce using Salesforce DX

-

practices:

Integration is maintaining a single source repository with

Using the Continuous Integration script along with a

code if for some reason the development team wants to
revert to an older version. Deploying version control,
though not essential, is an important safety net, allowing

forth between versions.

5

Continuous Integration in Salesforce using Salesforce DX

Deploying parallel connectors and virtual
machines allow automating and running tests and
build quickly, for even long-running processes.

Continuous Integration servers may be hosted
either on-premises or in the cloud. Unless the
enterprise has the required IT resources, skillset and
budget to access private network resources, opting
for cloud-hosted servers is the better option, any day.

Perform testing in a test environment, such as a
sand-box or scratch.org. Creating a disposable
environment such as a scratch org to test specific code
or changes is preferable to introducing changes to a
shared org.

Salesforce CLI makes it possible to automate the
creation of scratch orgs as part of the CI process. With
Salesforce CLI, it is possible to completely script all
tasks in the CI configuration file, regardless of adopting
org-based or package-based development

An easy way to get started quickly with Continuous
Integration is by cloning a sample repository from any
vendor of choice.

For large and complex projects or geographically
dispersed teams, setting a branching strategy may help
reduce complexity. Different branches allow each devel-
oper to makes changes and run tests in their branch.
The Continuous Integration process takes over after
each branch runs its testing.

6

Continuous Integration in Salesforce using Salesforce DX

Continuous Integration is increasingly the integration method of choice. The popularity is fuelled largely
by the speed at which it fixes bugs and enables the release of new features. Also, Continuous Integration
spares developers the hassles of having to backtrack to identify code breaks, in the process saving
considerable time and resources. Developers get to know where exactly problems occur, facilitating a
much faster response and repair. Continuous Integration in Salesforce CX results in 20% savings on
code reviews and 40% fewer bugs on average, minimal hotfixes, and no extra time required to deploy
code. The continuous testing process also means programmers never work on out-of-date products or

fall to the temptation of pushing changes hurriedly to meet deadlines or demand.

CONCLUSION

Write To Us

Continuous Integration in Salesforce using Salesforce DX

7

Write To Us

REFERENCES

https://developer.salesforce.com/blogs/2019/05/continuous-integration-with-salesforce-dx.html

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_ci.htm

https://trailhead.salesforce.com/en/content/learn/modules/sfdx_travis_ci

https://www.youtube.com/watch?v=wUc1l5keYmo

https://www.youtube.com/watch?v=lLfTPLGEwYI

https://www.youtube.com/watch?v=VLl1uUPF97g

https://www.youtube.com/watch?v=8obwIwvzmMw

https://www.appdynamics.com/blog/engineering/continuous-integration-works-big-benefit-no-one-talks/

https://developer.salesforce.com/blogs/2019/05/continuous-integration-with-salesforce-dx.html

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_ci.htm

RELATED EBOOKS:

Getting the Best Out of Salesforce through Customization

7 Questions to ask before a Salesforce lightning

Salesforce Workflow: Why your business needs it

Continuous Integration in Salesforce using Salesforce DX

Founded in 2009, Suyati Technologies partners with clients to engineer
great experiences for digital customers. We collaborate with businesses
to strategize and implement impactful digital initiatives that position our
clients ahead of the competition. We are digital-first and we focus on
delivering great customer experiences that accelerate exponential
growth.

Our custom technology solutions ensure that you win stakeholder
support, secure early wins through competitive advantage, and transform
your business for future growth. And our tailor-made platform, Mekanate,
helps you discover your business DNA from your passive and active data,
and use it to initiate, integrate and achieve operational e�iciency.

With our niche and rich expertise in a wide range of technologies and
services - CMS, CRM, e-commerce and Marketing Automation. We help
companies across the globe leverage their best on web and cloud
platforms.

Learn more: www.suyati.com Get in touch: services@suyati.com

